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Important LLM Terminology

Prompts or Query
* what we say to the LLM

Tokens
* words or parts of words used to train an LLM

Embeddings
* anumerical representation of sentences used to train LLMs
* all textis converted to numbers for training

Context Window
* the maximum number of tokens/words that an LLM can handle at a time

RAG - Retrieval Augmented Generation
* providing your own information to the LLM to help it answer questions
* usually private data that an LLM has not been trained on
Fine-Tuning
* providing additional training to teach an LLM new concepts



A Shallow Dive in the Technology
behind LLMSs




Steps in building an LLM

* Obtain ‘lots’ of data

* LLMs trained on web pages, books & all
the documents on the web

* Break the text up into words (also called
tokens)

* Use machine learning (neural networks)
to convert the text into numbers that
capture meaning

* The technical term for these numeric
values is embeddings.




Embeddings are the secret sauce behind LLMs

“The prosecution approached the bench.”
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An embedding captures...

Syntax
Semantics

Context and Relationships
Word Co-occurrence
Relationships and Analogies
Hierarchical Information
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The LLM learns to group
contextually similar concepts

close together in

n-dimensional space
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Dimensional Spaces
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The ‘brain’ of an LLM is its Vector Space

Your prompt is converted into an
embedding and the LLM tries to find the
semantically closest concepts in its
Vector Space to compose its answer

semantic search
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Hallucinations

* LLMs return answers based on the
distance between terms and concepts in
multi-dimensional space

* LLMs try and return their ‘best’ answer

* But the closest points in n-dimensions
may not be the ‘best’ answer — or may be
an incorrect answer —thus what we call a
hallucination




End of Shallow Dive



Prompt Engineering

* The process of designing and optimizing the input (or "prompt") to
achieve desired outputs or behaviors.

* The goal is to structure the input in a way that maximizes the
quality of the model's response

* Since language models respond to the text they are provided, how
a task is described or queried can significantly impact the result.



Prompt Engineering Example
Role Playing

Role: "You are a highly skilled legal assistant working for the District Attorney’s
office. Your task is to help prepare a case for trial based on the following evidence.
Review the details, organize the facts, and suggest next steps for the DA. Your
recommendations should be based on legal standards, and you must highlight any
areas where further investigation or clarification is needed.

Evidence:

* Assigned witness statement claiming they saw the defendant at the crime
scene at 9:00 PM.

* Security camera footage showing a person matching the defendant's
description entering a nearby store at 9:15 PM

* Aforensic report showing fingerprints matching the defendant’s on the
weapon found at the scene.

* The defendant's alibi stating they were at a friend’s house at 8:30 PM and
stayed there all night

* Phone records showing the defendant made a call near the crime scene at
8:45 PM



Prompt continues...

Based on this evidence, help the DA prepare the following:
1. A timeline of events to corroborate or refute the defendant’s alibi.
2. ldentify any inconsistencies in the evidence that should be investigated further.
3. Suggest legal motions or strategies that the DA could use to strengthen the case.

4. Highlight any risks or weaknesses in the case that the defense might exploit, and propose

solutions.”



Fine-Tuning Large Language Models (LLMs)

Fine-tuning is the process of taking a pre-trained large language model
and adapting it to a specific task or dataset.

This allows the model to learn domain-specific knowledge while retaining
its broad understanding of language.

Key steps include:

* Data Preparation: Curate a task-specific dataset

* Atask-specific dataset for fine-tuning should be carefully curated, ensuring it
is labeled, relevant, and sufficiently diverse to represent the target domain.

* Evaluation: Assess the model’s performance on validation data

* Benefits: Improves model performance for specific use cases (e.g.,
legal, medical text generation) without needing to train from scratch.

* Downside: Requires some technical expertise

Fine-tuning enables customization while leveraging the powerful
generalization capabilities of LLMs.
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